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Abstract

Oceanographic field programs often use δ15N biogeochemical measurements and in situ

rate measurements to investigate nitrogen cycling and planktonic ecosystem structure.

However, integrative modeling approaches capable of synthesizing these distinct measure-

ment types are lacking. We develop a novel approach for incorporating δ15N isotopic data

into existing Markov Chain Monte Carlo (MCMC) random walk methods for solving linear

inverse ecosystem models. We test the ability of this approach to recover food web indices

(nitrate uptake, nitrogen fixation, zooplankton trophic level, and secondary production)

derived from forward models simulating the planktonic ecosystems of the California Current

and Amazon River Plume. We show that the MCMC with δ15N approach typically does a

better job of recovering ecosystem structure than the standard MCMC or L2 minimum norm

(L2MN) approaches, and also outperforms an L2MN with δ15N approach. Furthermore, we

find that the MCMC with δ15N approach is robust to the removal of input equations and

hence is well suited to typical pelagic ecosystem studies for which the system is usually

vastly under-constrained. Our approach is easily extendable for use with δ13C isotopic mea-

surements or variable carbon:nitrogen stoichiometry.

Introduction

Reconstructing ecosystem structure and trophic flows through planktonic ecosystems is cru-

cial for understanding fisheries production, pelagic biogeochemistry, and the response of each

of these to a changing climate. However, quantitative investigation of energy transfer between

plankton functional groups is hampered by methodological limitations in separating ecological

groups and in making rate measurements on specific trophic levels. As a result, oceanogra-

phers often rely on mass-balance ecosystem models such as EcoPath [1] or Linear Inverse Eco-

system Models (LIM [2, 3]) to reconstruct trophic structure from sparse measurements.

However, the paucity and poor taxonomic resolution of common marine ecological measure-

ments leaves such modeling approaches vastly under-constrained (e.g. [4]). Stable isotope
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signatures (δ15N and δ13C) offer additional information on diet and trophic position but are

limited by difficulties in physically separating plankton functional groups with overlapping

size [5–7]. Additionally, in contrast to terrestrial or estuarine systems where bulk stable iso-

topes of different primary producers are very different (e.g. depending on C3 or C4 plant

metabolism), such differing bulk values have not been observed within plankton size classes

[8], although arguably this could also be due to the size overlap of organisms with different iso-

tope values [9]. Approaches capable of combining isotopic data and mass-balance approaches

are thus clearly needed [10].

Although the frequency of in situ pelagic 15N isotopic measurements is increasing, these

data are seldom incorporated into inverse ecosystem models for two related reasons. First,

although δ15N measurements are tractable for several of the inputs and outputs to the plank-

tonic ecosystem (e.g. metazoan zooplankton and larger organisms, sediment trap-based sink-

ing material, NO3
-), few measurements are made of intermediate compartments in the

ecosystem, such as different phytoplankton or protozoan taxa, due to the methodological diffi-

culty of these measurements [9], although particulate organic matter (POM) which includes a

combination of the mentioned compartments in addition to detritus and bacteria, is often

measured as well. This paucity of information on lower trophic levels would necessitate the

use of a variable 15N isotopic ratio for these taxa, which makes it impossible to linearize the

equations. To date, studies incorporating variable isotopic ratios into LIM have included, at

most, three compartments with unknown 15N [11, 12]. Instead, δ15N measurement results are

typically used in stable isotope mixing models that often overly simplify the linkages in a

planktonic ecosystem [13, 14]. Such models can, for instance, determine the relative role of

nitrate uptake and nitrogen fixation in supporting pelagic new production if δ15N-NO3
- and

δ15N-exported material are measured [15–17]. However, this approach relies on the assump-

tion that sediment trap caught material is representative of the isotopic signature of all material

exported from the system, and thus neglects export mediated by larger organisms that are

often enriched in 15N. Similarly, attempts to estimate fish trophic levels often use simple linear

mixed model approaches that assume that specific baseline consumers (e.g. crustacean zoo-

plankton or filter-feeding benthic organisms) are strictly herbivorous (i.e. at a trophic level of

two) [18–21] despite the facts that there can be multiple trophic steps within protists and the

baseline consumers often feed efficiently on microzooplankton. Powerful new stable isotope

models based on Bayesian statistical methods provide an additional approach for incorporat-

ing stable isotope measurements with prior knowledge of organism diet and isotopic fraction-

ation [22–24]. However, these approaches are often developed for analyzing only a single

trophic step and assume that the stable isotope signature of all dietary sources can be measured

(but see [25] for one notable exception). Pacella et al. [26] combined Bayesian and LIM meth-

ods by using stable isotope analysis in R (SIAR) to incorporate dual isotopic signatures (δ13C

and δ15N) and constrain the dietary compositions of organisms from a seagrass ecosystem.

These dietary compositions then provided powerful additional constraints for the LIM model.

However, this approach can only be used for taxa for which the isotopic signatures of all die-

tary sources are known and hence is not well suited to pelagic ecosystems. An approach capa-

ble of linking a trophic and biogeochemical perspective (and assimilating measurements from

both disciplines) would clearly be useful.

In this manuscript, we develop a framework for simultaneously incorporating δ15N mea-

surements and ecological rate measurements into a LIM while using Markov Chain Monte

Carlo (MCMC) sampling to thoroughly sample the under-determined solution space. A

scheme previously developed by van Oevelen et al. [12] for incorporating δ15N data into LIMs

relied on the L2 minimum norm (L2MN) approach. However, inherent biases in this L2MN

approach [27], suggest that methods reliant on it may be less accurate than approaches using
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the more recently developed MCMC LIM methodology [28, 29]. Indeed, the L2MN approach

has since been shown to be a less robust predictor of ecosystem flows than the MCMC

approach [28, 30]. Studies incorporating nitrogen or carbon isotopic information from benthic

ecosystems into the MCMC approach have either assumed that the isotopic signature of all

compartments within an ecosystem are known [31] or used enriched stable isotope tracer

additions to trace mass flow within the ecosystem [32, 33]. Since neither of these approaches is

feasible for pelagic systems in which methodological considerations make it impossible to

determine the isotopic signatures of many ecosystem compartments, we develop a new

approach for incorporating isotopic information into the existing MCMC LIM framework.

We follow the approach of Vézina and Pahlow [34] and use forward ecosystem models to gen-

erate simulated ecosystem flows; then use these simulated ecosystems to test the efficacy with

which our new approach (MCMC+15N), the Van Oevelen approach (L2MN+15N), and the tra-

ditional MCMC and L2MN approaches recover key ecosystem parameters when supplied only

with the types of data that are typically collected at sea.

Methods

We use two different forward models (NEMURO and DIAZO) and two separate sets of

boundary conditions for each to create four different sets of fully constrained ecosystem flows.

Because LIM models are designed to investigate the static, mass-balanced ecosystem structure,

we run each model to steady-state in a simple one-box ecosystem configuration. We then

determine input measurements—including ecosystem rate measurements (phytoplankton net

primary production, nitrate uptake, mesozooplankton grazing, and sinking particle flux) and

δ15N values of allochthonous nitrate sources, DOM, mesozooplankton, and sinking particles–

that are representative of the types of measurements that can be made in the field. We use

these input measurements to constrain LIMs solved using four different approaches: standard

L2MN and MCMC approaches and L2MN and MCMC approaches that incorporate δ15N

data. We then evaluate the ability of these LIM approaches to recover key ecosystem parame-

ters related to nitrogen biogeochemistry (the relative proportion of phytoplankton production

supported by new nitrate or nitrogen fixation) and plankton trophic dynamics (mesozoo-

plankton mean trophic level and secondary production). We also conduct additional tests in

which fewer ecosystem rate measurements are used as inputs to the inverse model. The follow-

ing sections explain the forward models used and the four LIM approaches tested.

Forward models

To generate test datasets with known ecosystem flows (Table 1) we used two published nitro-

gen-based ecosystem models (NEMURO and DIAZO) with distinctly different model struc-

ture and behavior. NEMURO was developed to investigate zooplankton secondary production

in the North Pacific for inclusion into ecosystem-based fisheries models [35, 36]. It contains

three nutrient pools (nitrate, ammonium, and silicic acid) and two phytoplankton taxa (dia-

toms and small phytoplankton). It also has a relatively complex zooplankton community

including protozoans, small herbivorous mesozooplankton, and large “predatory” mesozoo-

plankton (that are actually omnivorous in the model). We configured the NEMURO model to

run in a simple system designed to approximate the ecological dynamics of the euphotic layer

in the southern California Current Ecosystem (CCE). Two versions of NEMURO were run,

representing the coastal upwelling and offshore oligotrophic regions of the CCE. In the coastal

configuration a 20-m deep euphotic zone was parameterized with upwelling rates of 1 m d-1,

while in the offshore region a 100-m euphotic zone was parameterized with 0.1 m d-1 upwell-

ing. We parameterized NEMURO using the phytoplankton values determined by Li et al. [37]
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from in situ rate measurement experiments conducted on CCE Long-Term Ecological

Research cruises.

The DIAZO model was developed to investigate diazotroph growth and mortality terms in

the Amazon River Plume [38]. As a result it has a diverse phytoplankton community including

cyanobacteria, unicellular microbial diazotrophs, diatoms, diatom-diazotroph assemblages,

and Trichodesmium. DIAZO has three nutrient pools (dissolved inorganic nitrogen, dissolved

inorganic phosphorus, and silicic acid) and two zooplankton compartments (protozoans and

mesozooplankton). Unlike NEMURO, DIAZO also allows protozoans to feed on themselves,

thus simulating the longer protozoan food webs found in oligotrophic regions. We configured

DIAZO to run in two 1-D systems: a low salinity coastal plume region (with high nutrient con-

centrations derived from the Amazon River outflow) and a mesohaline region with depleted

NO3
- but high Si and PO4

+ that is believed to be an ideal habitat for diazotrophs [39, 40].

In the DIAZO and NEMURO models, mesozooplankton mortality equations simulate pre-

dation by un-modeled higher trophic levels and other mortality terms and return the con-

sumed mesozooplankton nitrogen to the detritus, dissolved organic nitrogen (DON), and

dissolved nutrient pools. Since export mediated by sinking mesozooplankton carcasses or un-

modeled higher trophic levels (including active transport and fecal pellets produced by fish

and squid) is not typically captured in sediment traps, we modified both models such that

mesozooplankton biomass consumed by this higher trophic level consumption was simply

removed from the model (i.e. mesozooplankton secondary production is a sink term in the

planktonic ecosystem).

Since our goal was to investigate the utility of δ15N isotopic data for inverse modeling

reconstructions of pelagic food webs, we added a nitrogen isotopic model to NEMURO and

DIAZO. The isotopic model was based on Yoshikawa et al. [41] and adds extra state variables

representing the concentration of 15N in each nitrogen-containing model compartment (all

living compartments, nutrients, DON, and detritus). Following Yoshikawa et al. [41], phyto-

plankton take up NO3
- with a 15N fractionation factor (εNO3) of -5‰ and NH4

+ (and dissolved

inorganic nitrogen (DIN) in the DIAZO model) with εNH4 = -10‰. Zooplankton excretion

and egestion are accompanied by fractionation factors of εexc = -5‰ and εeg = -2‰, respec-

tively, while remineralization of detritus or DON to NH4
+ has εrem = -1‰. We assume that

Table 1. Comparison of the structures of the two forward (dynamical) models (NEMURO and DIAZO) and the inverse model (LIM).

Nutrients Phytoplankton Zooplankton Bacteria Diazotrophy Configurations

NEMURO NO3

NH4

Si

SmallS,M

LargeM,P
Small (Protists)

Mesozooplankton

Pred. Mesozoo.

Implicit No Coastal

Offshore

DIAZO Nitrogen

Phosphorus

Silica

TrichodesmiumP

Unicellular DiazotrophsP

CyanobacteriaP

DiatomsM,P

DDAM,P

Protists

Mesozooplankton

Implicit Yes Coastal

Mesohaline

LIM NO3

NH4

Small PhytoplanktonN,μ

Large Phytoplanktonμ,M
Nanoflagellates

(μ)Microzooplankton

Mesozooplankton

Explicit Yes L2MN

L2MN+15N

MCMC

MCMC+15N

Under phytoplankton categories, the superscripts denote which zooplankton groups consume the phytoplankton group. The 4 LIM configurations (L2MN, L2MN+15N,

MCMC, MCMC+15N) are each run 4 times to simulate the 4 forward model configurations (NEMURO-Coastal, NEMURO-Offshore, DIAZO-Coastal,

DIAZO-Offshore).

https://doi.org/10.1371/journal.pone.0199123.t001
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nitrogen fixation (not included in [41]) introduces nitrogen to the ecosystem with a 15N isoto-

pic ratio equal to that of atmospheric nitrogen.

The DIAZO and NEMURO models with 15N were both run to steady state using a 15-min-

ute time step. Our goal with these simple 1-D models was not to faithfully simulate the full

dynamics of the ecosystems modeled (although the steady state solutions agree reasonably

with in situ measurements of phytoplankton size structure and growth rates and zooplankton

grazing structure measured in the California Current Ecosystem [42–44] or Amazon River

Plume [39, 45, 46]). Rather, we wanted to produce simple steady-state inputs representing four

distinct ecosystem states (CCE coastal and offshore; Amazon Plume coastal and mesohaline)

using models that differed substantially from each other and from the underlying ecosystem

structure that we use for the inverse model. This replicates the difficulty encountered when

attempting to model an in situ ecosystem for which the true structure of the system is

unknown and hence the inverse model structure cannot be assumed to perfectly match the in
situ plankton functional groups.

From these 4 forward simulations we determine steady-state rate values (net primary pro-

duction, NO3
- uptake, mesozooplankton grazing, and sediment trap-derived export), standing

stocks (cyanobacteria biomass, diatom biomass, mesozooplankton biomass), and δ15N values

(of exogenous NO3
- entering the ecosystem, mesozooplankton, DOM, and sinking detritus)

that are representative of measurements that can be readily made in the field. We use these val-

ues as input measurements for the LIM approaches (see below). We then assess each LIM

approaches’ ability to recover 15 withheld forward model results for each forward model con-

figuration: N2 fixation, total phytoplankton nitrogen uptake, cyanobacteria net primary pro-

duction (NPP), diatom NPP, protozoan grazing rate (on phytoplankton), mesozooplankton

carnivory (on other mesozooplankton), protozoan carnivory (on other protists), mesozoo-

plankton secondary production, protozoan gross growth efficiency (GGE), mesozooplankton

GGE, protozoan trophic level (TL), mesozooplankton TL, herbivorous food chain (the per-

centage of total NPP that mesozooplankton consume through direct grazing of phytoplank-

ton), multivorous food chain (proportion of NPP that is consumed in a food chain including

multiple zooplankton groups before contributing to higher trophic levels), microbial loop food

web (ratio of bacterial remineralization of DOM to total NPP). Note that bacterial reminerali-

zation is implicit in both forward models and explicit in the LIM models.

Linear Inverse Model (LIM) ecosystem structure

We use a simple LIM ecosystem structure that is characteristic of many LIM models of the

planktonic ecosystem and borrows elements from Jackson & Eldridge [47] and Richardson

et al. [48]. Our LIM includes 5 living compartments: small phytoplankton (SPHY), large phy-

toplankton (LPHY), heterotrophic nanoflagellates (HNF), microzooplankton (MIC), and

mesozooplankton (MES). It also includes 4 non-living compartments: ammonium (NH4),

nitrate (NO3), detritus (DET), and dissolved organic matter (DOM). All model flows are mea-

sured in nitrogen currency (mmol N m-2 d-1). Phytoplankton production is supported by

uptake of NO3 and NH4, and nitrogen fixation. Heterotrophs graze on phytoplankton (MES

are assumed to be incapable of grazing on SPHY) as well as on other heterotrophs smaller than

themselves. Mesozooplankton are also assumed to be capable of carnivory on themselves

(though other grazers do not feed on themselves). All living taxa lose nitrogen to DOM (excre-

tion) and to DET (defecation by grazers, mortality by phytoplankton). DET is remineralized to

DOM and DOM is remineralized to NH4. Inputs of nitrogen to the ecosystem (upwelled or

advected NO3 and nitrogen fixation) are balanced by sinking DET and loss of MES to higher

trophic levels (HTL). There are a total of 35 ecosystem flows (Figs 1 and 2).
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In the LIM we solve a series of systems of equations including:

Ex ¼ f ð1Þ

which quantifies mass balance constraints on each model compartment (9 equations).

Ax � b ð2Þ

which quantifies measurement constraints with associated uncertainty (primary production,

nitrate uptake, mesozooplankton grazing, and sediment trap flux). We assume that measure-

ment uncertainty in these parameters is ±10%. For the MCMC+15N and L2MN+15N models

we also include 15N mass balance constraints. These constraints are included in the approxi-

mate equations because, while mass balance must hold, we assume nitrogen fractionation fac-

tors included in these equations are not exactly known. We assume that uncertainty in these

mass balance equations is equal to 10% of the sum of the mass flow through the compartment

multiplied by the expected isotopic fractionation between compartments.

Gx � h ð3Þ

which quantifies a priori assumed greater than / less than constraints on organisms within the

ecosystem (e.g. gross growth efficiency of grazers varies between 10 and 40%). A full list of

greater than / less than equations can be found in the S1 Supplementary Text.

L2MN and MCMC model approaches

With 35 unknown flows and only 9 exact equalities and 4 approximate equalities (and an addi-

tional 10 approximate equalities for the LIM solutions including 15N), the model is substan-

tially under-constrained. Hence there are an infinite number of solutions that can satisfy Eqs

1, 2, and 3 (unless some of the equations and inequalities are inconsistent). To choose amongst

this infinite number of solutions to the inverse problem, the study that originally brought LIM

methodology to aquatic ecology used an L2MN approach [3, 49]. This approach requires that

the solution must satisfy Eq 1 and In Eq 3. The L2MN approach then chooses the solution that

Fig 1. Schematic diagram showing LIM ecosystem flows. Compartments are nitrate (NO3), ammonium (NH4),

small phytoplankton (SPhy), large phytoplankton (LPhy), heterotrophic nanoflagellates (HNF), microzooplankton

(MIC), mesozooplankton (MES), detritus (DET), and dissolved organic matter (DOM).

https://doi.org/10.1371/journal.pone.0199123.g001
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minimizes Eq 2 and if there are multiple solutions that have zero residual error in Eq 2, the

L2MN approach chooses the solution that minimizes the sum of squared flows through the

ecosystem. To solve the inverse problem we used the function lsei contained in the R Package

limSolve [50].

Fig 2. LIM solutions for DIAZO (Coastal) model (a), DIAZO (Mesohaline) model (b), NEMURO (Coastal) model (c), and NEMURO (Offshore) model (d).

Units are mmol N m-2 d-1. Light and dark box plots show 95% confidence intervals, quartiles, and mean for MCMC and MCMC+15N, respectively. Light and

dark diamonds show values determined by L2MN and L2MN+15N, respectively.

https://doi.org/10.1371/journal.pone.0199123.g002
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While the L2MN approach has been widely used, there is no a priori reason to assume that

the solution that minimizes nitrogen (or carbon) flow through the ecosystem is the most

appropriate solution. As an alternate approach, Kones et al. [28, 29] developed a Markov

Chain Monte Carlo (MCMC) random walk method that uses a Metropolis algorithm to sam-

ple throughout the viable solution space. The MCMC approach initiates with a solution (x0)

that is known to solve Eqs 1 and 3. A new proposed sample (x1) is then drawn from a random

jump through the region constrained by Eqs 1 and 3. The residual error of x1 with respect to

Eq 2 is then compared to the residual error of x0 to determine whether the new solution should

be accepted. If x1 is accepted the process is iterated to determine another solution. If not, the

process is repeated from x0. In this way a constrained random walk is performed through the

solution space. This iteration procedure produces a target distribution of solutions satisfying

Eqs 1–3. Summary statistics (mean, standard deviation, confidence intervals) for each ecosys-

tem flow can then be calculated. For more details, we refer readers to Van den Meersche et al.

[51] and van Oevelen et al. [2]. The MCMC mean solution has been shown to more accurately

estimate in situ ecosystem measurements that are withheld as inputs to the model [30, 52]. It

also avoids the undesirable tendency that the L2MN approach has for choosing solutions that

are extreme values of the possible solution space (i.e. the L2MN approach often selects solution

sets that rest on one of the hyperplanes formed by Gx�h). We implemented the MCMC

approach using the R function xsample [51].

L2MN+15N model approach

Incorporating 15N into a LIM is essentially equivalent to incorporating any other form of sec-

ond currency into the model (e.g. using carbon and nitrogen to constrain the model). Such

models are a trivial extension of previous LIM approaches if the stoichiometry (C:N or δ15N)

of all model compartments is known or assumed. However, in most pelagic ecosystem studies

the δ15N (or C:N) values of many components of the ecosystem cannot be measured. In a

study focused on benthic ecosystems, van Oevelen et al. [12] developed an approach for incor-

porating δ13C measurements into a LIM model for which the δ13C of three components of the

ecosystem were unknown. Since trophic fractionation of δ13C is minimal, they incorporated

linear mixing equations into the equality constraints with the following form:

d
13Cj ¼

P
iðd

13Cj � flowi!jÞ
P

i flowi!j
ð4Þ

They then conducted a grid search (±0.1 δ13C) calculating the L2MN solution for every reason-

able combination of δ13C values for the 3 compartments with unknown δ13C. The chosen solu-

tion was the solution that minimized the residual error and (if multiple solutions had zero

residual error) the sum of squared ecosystem flows.

It was necessary to adapt this approach to work with δ15N, because trophic fractionation

significantly affects the δ15N values of a compartment, as they are determined not only by their

sources of nitrogen but also by the degree of fractionation of the loss terms from that compart-

ment. Thus we constructed a system of δ15N mass balance equations for the flow of 15N into

and out of each compartment, e.g. for NO3:

Rupno3 � EXT! NO3 � ðRno3 � ano3Þ �NO3! CYA � ðRno3 � ano3Þ �NO3! DTM

¼ 0 ð5Þ

where Rupno3 and RNO3 are the ratio of 15N to total N for allochthonous nitrate entering the

ecosystem and euphotic zone nitrate, respectively, αno3 is the isotopic fractionation coefficient
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for nitrate uptake and is equal to exp(εno3), EXT!NO3 is the ecosystem flow corresponding

to allochthonous nitrate entering the ecosystem, and NO3!CYA and NO3!DTM are the

ecosystem flows corresponding to nitrate uptake by CYA and DTM. The full set of 15N mass

balance equations can be found in Appendix 1. These equations were incorporated into the

approximate equations (Eq 2), because while mass balance must hold, we assume that fraction-

ation terms are uncertain.

We included the δ15N values of allochthonous nitrate entering the ecosystem, euphotic

zone DOM, zooplankton, and sinking detritus as measured inputs given to the LIM, because

these measurements can be readily made in the field (e.g. [53–56]). This left 6 model compart-

ments (NO3, NH4, CYA, DTM, HNF, and MIC) for which δ15N was unknown. We conducted

a grid-search through this 6-dimensional grid space testing all realistic parameter ranges (with

0.25 ‰ step size), solving the L2MN for each δ15N parameter set. The solution set with the

lowest residual norm (σ-2(Ax-b)T(Ax-b)) was selected as the L2MN+15N solution. We note,

however, that a slightly better solution might be found with greater discretization of the tested

δ15N values although computational power limited the step size we could use (decreasing the

step size from 0.25 to 0.1 would have required computing the L2MN ~20 billion times rather

than ~100 million times). Use of the L2MN+15N approach with models containing additional

compartments will likely require the use of a gradient-based variational approach rather than a

full grid search.

MCMC+15N model approach

The MCMC approach has many desirable qualities, not least of which is the fact that it allows

computation of model uncertainty resulting from both uncertainty in the inputs to the model

and the inherent under-determinacy of the system [28]. The MCMC is also a more efficient

sampler of the parameter space than a full grid search and we took advantage of this by includ-

ing varying δ15N values in the MCMC search algorithm. These unknown δ15N values are

stored in a new vector (@U), while the known (measured) δ15N values are stored in a vector

(@K). The δ15N values are incorporated into the approximate equations (Eq 2) using the same

mass balance constraints as for the L2MN+15N (Appendix 1). The matrix A is thus now a func-

tion of @U and @K. During the MCMC algorithm when a new proposed sample (x1) is deter-

mined with a random jump from the previous solution vector (x0), we also propose a new set

of δ15N values (@U,1) by performing a random jump from the prior set of δ15N values (@U,0).

We then call a function that recalculates the matrix A1 as a function of @U,1 and @K. We then

proceed (as for the standard MCMC approach) to decide whether to accept or reject x1 and

@U,1 based on the ratio of p(x1,A1)/p(x0,A0). If the values are accepted, both x1 and @U,1 are

appended to the overall solution. If not, they are rejected and the process is repeated from x0

and @U,0. This approach thus generates a series of solutions that satisfy the equality constraints

(Eq 1) and inequality constraints (Eq 3), while approximately satisfying the input measure-

ments and δ15N mass balance equalities codified in Eq 2 and Appendix 1. Model code was

written in the open source language R (3.3.2) to take advantage of existing algorithms in the

limSolve package [57] and can be downloaded from GitHub at: https://github.com/stukel-lab/

N15-LIM.

Model runs with less constraint

Due to the difficulty of measuring pelagic ecosystem rates in situ, most LIM studies have a

lower ratio of measurement constraints to unknown flows than our base LIM studies. As a

result, we conducted tests in which we withheld either single measurements or pairs of

measurements. These simulations were conducted by sequentially withholding a single
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measurement constraint (nitrate uptake, mesozooplankton grazing, or sediment trap-derived

export) or pairs of those measurements. Primary productivity was never withheld as a mea-

surement constraint, because it has been measured in every pelagic LIM study that we have

encountered.

Statistical analysis

To compute 95% confidence intervals for derived variables (e.g. trophic level) from MCMC

and MCMC+15N approaches, we computed the derived variable for each individual solution

and took the 95% confidence intervals of this distribution of derived variables. We depict these

values as whisker plots showing means, quartiles, and 95% confidence intervals. For an objec-

tive comparison of the efficacy with which each LIM approach depicted the underlying “true”

ecosystem structure we compared LIM estimates for each of the withheld results in Table 2.

These varied ecosystem indices could be similarly calculated for both forward models and the

LIM ecosystem reconstructions and together gave a composite snapshot of ecosystem struc-

ture. To ensure that each of the 15 indices was given equivalent weight, we first pooled results

for each individual index (e.g. all estimates of N2 fixation from the four forward model runs

and from the 112 LIM runs (4 forward models × 4 approaches × 7 input configurations)). We

then used a two-parameter Box Cox transformation (R function boxcoxfit) to normalize this

pooled data, subtracted off the mean, and divided by the standard deviation. Thus values for

all indices were approximately normal, with a mean of 0 and standard deviation of 1. To deter-

mine a composite index that assessed the overall effectiveness with which any LIM model run

recovered the underlying “true” values from the forward model, we computed the sum of

squared errors (SSE) by subtracted the “true” value from the LIM prediction and summing the

square of this value for all 15 indices. To visualize this data in two dimensions we used non-

metric multi-dimensional scaling using the mdscale function in Matlab. Dissimilarities used as

inputs for mdscale were calculated from Matlab function pdist.

Results and discussion

Forward model results

We used two models (DIAZO and NEMURO), each run twice to simulate different ecosystem

conditions, to develop four ecosystem snapshots for use as inputs to the inverse modeling algo-

rithms (Table 2). The DIAZO model was configured to simulate conditions in the coastal and

mesohaline region of the Amazon River Plume. In the coastal region, nutrients derived from

the Amazon River (0.8 μmol L-1 phosphate, 32 μmol L-1 silicic acid, and 8.5 μmol L-1 nitrate

with a riverine δ15N value of 7.7) support a moderately productive ecosystem. Diatoms fueled

70% of net primary production and this diatom-dominance was reflected in the zooplankton

community structure with mesozooplankton responsible for 60% of total grazing and main-

taining a biomass 4 times greater than protistan zooplankton. These mesozooplankton were at

a trophic level of 2.15 (reflecting a predominantly diatom diet) and had a δ15N value of 6.10.

In the mesohaline region, where diatom-diazotroph assemblages are expected to be com-

mon, the DIAZO model predicted substantial N2 fixation, with N2 fixation supporting 74% of

the total new production in the system. Net primary production was reduced relative to the

coastal region (0.70 mmol N m-2 d-1, compared to 2.17 mmol N m-2 d-1). Cyanobacteria:dia-

tom biomass was more closely balanced in the mesohaline region and a substantial portion of

the diatom community was comprised of diatom-diazotroph assemblages. Mesozooplankton

had a similar trophic level to that in the coastal region (2.21) although they comprised a lower

proportion of total grazing (40%) and had a substantially lower δ15N signature of 5.08 reflect-

ing the increased importance of N2 fixation in this region.
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The NEMURO model was used to simulate plankton communities in the coastal upwelling

region of the California Current Ecosystem and the oligotrophic North Pacific Subtropical

Gyre. Both systems were supported by upwelled nutrients at a concentration of 10 μmol NO3
-

Table 2. Model results from the DIAZO and NEMURO models (at steady state).

Model results used as inputs to inverse model

DIAZO (Coastal) DIAZO (Mesohaline) NEMURO (Coastal) NEMURO

(Oligotrophic)

Net Primary Production (mmol N m-2 d-1) 2.17 0.70 13.61 2.42

NO3
- Uptake (New Production) (mmol N m-2 d-1)�� 0.72� 0.04� 8.44 0.95

Mesozooplankton Grazing (mmol N m-2 d-1) 1.09 0.24 8.11 1.25

Sediment Trap Export (mmol N m-2 d-1) 0.42 0.10 7.28 0.69

Cyanobacteria Biomass (mmol N m-2) 1.55 1.21 12.12 14.65

Diatom Biomass (mmol N m-2) 2.57 1.63 34.58 10.94

Mesozooplankton Biomass (mmol N m-2) 6.38 2.14 18.38 17.99

Temperature (˚C) 28.00 28.00 12.00 14.00

δ15N exogenous NO3
- 7.70 13.25 5.70 5.70

δ15N Mesozooplankton 6.10 5.08 7.68 7.23

δ15N DOM 4.20 2.95 4.87 4.66

δ15N Sinking Detritus 3.98 2.88 4.42 4.82

Model results withheld from inverse model

New Production (N2 Fixation) (μmol N m-2 d-1) 3.11 100.48 0 0

Total N Uptake (mmol N m-2 d-1) 3.09 0.96 17.16 3.53

Cyanobacteria Net Primary Production (mmol N m-2 d-1) 0.48 0.25 2.51 1.33

Diatom Net Primary Production (mmol N m-2 d-1) 1.69 0.45 11.10 1.09

Protozoan Grazing Rate (mmol N m-2 d-1) 0.73 0.36 0.53 0.74

Mesozooplankton Carnivory (MES!MES) (mmol N m-2 d-1) 0 0 1.89 0.24

Protozoan Carnivory (HNF!MIC) (mmol N m-2 d-1) 0.11 0.07 0 0

Mesozooplankton Secondary Production (mmol N m-2 d-1) 0.30 0.04 1.16 0.26

Protozoan GGE 0.3 0.3 0.3 0.3

Mesozooplankton GGE 0.3 0.3 0.3 0.3

Protozoan Trophic Level 2.12 2.22 2.00 2.00

Mesozooplankton Trophic Level 2.15 2.21 2.46 2.37

Herbivorous Food Chain1 (Percent Total NPP) 0.50 0.34 0.23 0.27

Multivorous Food Chain2 (Percent Total NPP) 0.34 0.51 0.01 0.16

Microbial Loop Food Web3 (Percent Total NPP) 0.80 0.83 0.19 0.28

δ15N Euphotic Zone NO3
- 13.25�� 11.96�� 9.92 8.84

δ15N NH4
+ 13.25�� 11.96�� 12.80 13.60

δ15N Cyanobacteria 3.03 1.73 3.91 3.65

δ15N Diatoms 3.17 1.59 3.87 3.64

δ15N Protozoans 6.17 5.04 6.52 6.26

Upper portion of table shows results that were given as input to the inverse models. Lower portion shows results that were withheld and can be used as comparisons for

the inverse models.
1Herbivorous Food Chain is proportion of NPP routed through the direct phytoplankton!mesozooplankton! higher trophic levels food chain.
2Multivorous food chain is proportion of NPP that enters food chains that pass through multiple zooplankton before reaching higher trophic level.
3Microbial loop is proportion of NPP that is (implicitly) processed by bacteria through degradation of DOM to NH4

+.

�The DIAZO model has only one dissolved inorganic nitrogen compartment (DIN, rather than NO3
- and NH4

+), hence new production that would be equivalent to

nitrate uptake is calculated from the proportion of exogenous (non-recycled) DIN used by phytoplankton.

��The δ15N value of the single DIN pool in DIAZO is given for both NO3
- and NH4

+.

https://doi.org/10.1371/journal.pone.0199123.t002
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L-1 and 10 μmol Si L-1, but the upwelling rates differed substantially (1 m d-1 into a 30-m

euphotic layer in the coastal region; 0.1 m d-1 into a 100-m euphotic layer in the oligotrophic

region). The coastal region exhibited the highest net primary productivity (13.6 mmol N m-2

d-1) and f-ratio (new production / total production = 49%) of our model runs. Diatoms were

the dominant phytoplankters (65% of biomass; 82% of production) and mesozooplankton

were responsible for nearly all grazing (94%). Despite their substantial grazing rates, meso-

zooplankton had a high trophic level of 2.46, reflecting the prevalence of mesozooplankton

carnivory (unlike in the DIAZO model, the NEMURO model contains a predatory mesozoo-

plankton class that can feed on other mesozooplankton).

The offshore oligotrophic NEMURO run had the lowest net primary productivity by vol-

ume of any of our model runs (although vertically integrated primary productivity was higher

than in the DIAZO model runs, as we assumed a 10-m mixed layer for the Amazon Plume and

a 100-m euphotic zone for the oligotrophic subtropical gyre). This low productivity was

matched by cyanobacterial dominance of the phytoplankton community (57% of biomass;

55% of production). However, this cyanobacteria production did not translate into an impor-

tant role for protozoans, which were responsible for 37% of the grazing. This high cyanobacte-

ria / low protozoan condition is determined by the structure of NEMURO, which allows

mesozooplankton to graze on both phytoplankton classes, but restricts protozoans to consum-

ing only cyanobacteria. Mesozooplankton had a lower trophic level and δ15N than in the

coastal upwelling region, reflecting reduced rates of carnivory.

Inverse model ecosystem reconstructions

Results from the forward model run (primary production, nitrate uptake, mesozooplankton

grazing, cyanobacteria biomass, diatom biomass, mesozooplankton biomass, and the δ15N sig-

natures of exogenous NO3
-, mesozooplankton, DOM, and sinking detritus) were used to force

LIM simulations using the L2MN, L2MN+15N, MCMC, and MCMC+15N approaches. To

assess the accuracy of the nutrient dynamics in each of the LIM simulations, we compared the

ratio of NO3
- uptake to total nitrogen uptake and N2 fixation to total nitrogen uptake (Fig 3, S1

Fig). A distinct difference was clear between the L2 minimum norm approaches and the

Monte Carlo approaches, with both MCMC approaches consistently underestimating the ratio

of percent nitrogen taken up as new nitrate and the L2MN approaches typically overestimating

nitrate uptake percentage. However, the addition of 15N information consistently improved

the MCMC+15N approach relative to the standard MCMC approach. The mean percent error

decreased from a 43% underestimate with the MCMC approach to a 27% underestimate with

the MCMC+15N approach. When comparing the LIM approaches’ recovery of N2 fixation

rates all four approaches overestimated N2 fixation for the DIAZO coastal run and both

NEMURO model runs (which was unsurprising since the NEMURO model does not allow N2

fixation). However, the L2MN approach (without 15N) typically performed worse than the

other three approaches, estimating that N2 fixation was always between 8 and 13% of total

nitrogen uptake (when the “true” value was negligible), while the other three approaches were

comparable and suggested fractions of 1% - 9% (except for the L2MN+15N approach with the

DIAZO coastal model run, which predicted 15%). For the DIAZO mesohaline run, the “true”

value from the forward model was 10% and the MCMC approaches slightly underestimated

this value (7% for MCMC; 9% for MCMC+15N), while the L2MN+15N approach slightly over-

estimated it at 13% and the L2MN approach substantially overestimated it at 27%.

To determine the ability of the LIM approaches to reconstruct grazer dynamics, we com-

pared the forward model values to trophic level and secondary production estimates from the

LIM models (Fig 4, S2 Fig). Both MCMC approaches did a reasonable job of recovering
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mesozooplankton trophic levels for all model simulations (95% confidence intervals consis-

tently bracketed the “true” values), although they were often high or low by ~0.2 trophic levels.

However, the L2MN approaches were biased low, particularly with the NEMURO model, for

which they predicted trophic levels ranging from 2.01–2.12, while the “true” values were 2.46

and 2.37. For mesozooplankton secondary production (which we define herein as the amount

of mesozooplankton production that was consumed by higher trophic levels), we found that

Fig 3. LIM NO3
- Uptake (a) and N2 Fixation (b). Both plots show fraction of total phytoplankton nitrogen supplied by

respective process. Light and dark box plots show 95% confidence intervals, quartiles, and mean for MCMC and

MCMC+15N, respectively. Light and dark diamonds show values determined by L2MN and L2MN+15N, respectively.

Dashed gray line shows “true” value from the forward model run.

https://doi.org/10.1371/journal.pone.0199123.g003
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the MCMC, MCMC+15N, and L2MN+15N approaches did a good job of recovering the “true”

values for the oligotrophic ecosystem states, but were biased slightly high for the coastal ecosys-

tem states. By contrast, the standard L2MN approach consistently overestimated secondary

production, at times predicting values that were greater than three times the expected value.

Fig 4. LIM Mesozooplankton trophic level (a) and secondary production (b). LIM secondary production is the flow

from MES to unmodeled higher trophic levels. Light and dark box plots show 95% confidence intervals, quartiles, and

mean for MCMC and MCMC+15N, respectively. Light and dark diamonds show values determined by L2MN and

L2MN+15N, respectively. Dashed gray line shows “true” value from the forward model run.

https://doi.org/10.1371/journal.pone.0199123.g004
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Inverse model performance with less constraint

The LIM structure used here is relatively simple and well-constrained compared to many

inverse models that include greater taxonomic complexity amongst the plankton, higher tro-

phic level compartments, or multi-layer ecosystems (e.g. [47, 48, 58]). As a result, the rank

parameter for our LIM structure (which denotes the number of linearly independent equations

in Eqs 1 and 3, and is equal to the number of unknown flows minus the number of constrain-

ing equations) is much lower than for many published ecosystem models. For comparison, the

rank of the base L2MN structure of our model (35 ecosystem unknowns, 9 mass balance con-

straints, 4 measurement constraints) is 22, while the Antarctic ecosystem LIM of Sailley et al.

[58] contained 48 unknowns, 10 mass balance constraints and only 2 measurement constraints

(rank = 36) and the Equatorial Pacific model with size-fractionated detritus of Stukel and

Landry [4] contained 62 unknowns, 12 mass balance constraints, and 8 measurement con-

straints (rank = 42). To determine the efficacy of the 4 LIM approaches when the system has

less constraint, we recomputed the solutions while sequentially withholding one or two of our

measurement constraints (with the exception of NPP, which has been used as an input for

every pelagic ecosystem LIM that we have seen), thus yielding 6 additional LIM solutions for

each approach (3 with a single measurement withheld, 3 with pairs of measurements

withheld).

When assessing mesozooplankton dynamics (trophic level and secondary production), the

MCMC+15N model showed relatively little degradation in accuracy as the model became more

underconstrained (Fig 5A–5D). In fact, for the two coastal simulations, trophic level estimates

did not change substantially when measurements were withheld, but secondary production

estimates decreased to more closely match the “true” value determined by the forward model

run. For the mesohaline and offshore runs, the model performed slightly more poorly on aver-

age when measurements were withheld. Similar results were found when comparing nitrogen

dynamics estimated with measurements withheld (Fig 5E–5H); results obtained by the

MCMC+15N approach were relatively insensitive to which measurements were used as inputs

to the model. By contrast, the offset between the MCMC estimate and the “true” value tended

to be a bit larger when more measurements were withheld, while solution sets from both

L2MN approaches exhibited strong sensitivity to which measurements were used as inputs

(error often switched from over- to under-estimates, or vice versa, depending on which mea-

surements were withheld).

For a holistic comparison of the efficacy with which each LIM approach depicted the

underlying “true” ecosystem structure we compared LIM estimates for each of the withheld

results in Table 2. We computed the sum of squared errors (SSE) for each LIM model run with

respect to the “true” values for each of these indices. This composite value reflects how well the

LIM ecosystem structure captures the overall value. With respect to SSE, the MCMC+15N

approach performed better than the standard MCMC approach for 27 of the 28 model-measure-

ment input pairings and was the best of the four approaches for 23 of the 28 scenarios. Com-

pared to the other approaches, the MCMC+15N approach also showed less deterioration in

accuracy when measurements were withheld. With all input measurements included, the median

SSE for the MCMC+15N approach was 20.7 while it was 20.8 with one measurement withheld

and 20.2 with two measurements withheld. The relative insensitivity of the MCMC+15N

approach to removal of measurements is also clear when the results are plotted using non-metric

multi-dimensional scaling (NMDS, Fig 6). While the MCMC approaches tended to cluster

together, the results from the L2MN approaches were highly sensitive to which measurements

were used as inputs and often produced results on opposite sides of the NMDS plot. These highly

divergent results arise from the L2MN approaches’ tendency to select solution sets that lie on the
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Fig 5. LIM accuracy when input measurements are withheld. Panels a-d show mesozooplankton secondary

production (mmol N m-2 d-1, x-axis) against mesozooplankton trophic level (y-axis). Panels e-g show NO3
- uptake

(fraction of total N uptake, x-axis) against N2 fixation (fraction of total N uptake, y-axis). Gray circles indicate the

“true” values from the forward models. Other symbols are MCMC (square), MCMC+15N (diamond), L2MN (triangle),

and L2MN+15N (star). Symbol size reflects the number of measurements withheld as inputs for the inverse model

(large is no measurements withheld, medium is one measurement withheld, small is two measurements withheld). a,e)

DIAZO Coastal; b,f) DIAZO Mesohaline; c,g) NEMURO Coastal; d,h) NEMURO Offshore.

https://doi.org/10.1371/journal.pone.0199123.g005
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edge of the possible solution space (e.g. gross growth efficiency, which can vary from 0.1 to 0.4 is

usually placed at exactly 0.1 or 0.4).

δ15N values

The MCMC+15N approach also did an excellent job of recovering the δ15N signatures of

model compartments (Fig 7). Most of the time, the model 95% confidence intervals bracketed

the actual values and a Type 1 linear regression of the MCMC+15N predicted values regressed

against the “true” values was statistically significant (p<<0.001) with a slope of 1.05, an inter-

cept of 0.39, and an r2 value of 0.90. The only major discrepancy between the MCMC+15N val-

ues and the “true” values arose with the δ15N value of NO3
- for the DIAZO model. This misfit

was not unexpected as the DIAZO model has only one dissolved inorganic nitrogen state vari-

able (the δ15N value of which was used for the “true” value for both NO3
- and NH4

+). In most

Fig 6. Non-metric multi-dimensional scaling (NMDS) plot showing model variability with respect to the 15 model results withheld from

the inverse model in Table 2 (excluding δ15N values). The minimized stress of the NMDS analysis was 0.16.

https://doi.org/10.1371/journal.pone.0199123.g006
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instances, the L2MN+15N also did a reasonable job of recovering most δ15N values. However,

occasionally estimates generated by this approach were far from the “true” values, particularly

when dealing with compartments through which the L2MN+15N approach predicted relatively

little energy throughput. Because of these occasional large misfits, the r2 value of a linear

regression was lower (0.76).

Considerations for use with in situ data sets

In this study, we used simulated datasets from four configurations of dynamical (forward)

models to test the efficacy with which static, mass-balanced LIM approaches recover ecosystem

structure when only given inputs that are typically measured in situ. This approach has proven

a powerful way to assess investigate LIM methodology [34, 59], although it is not without its

limitations due to the inherent differences between dynamic simulations and steady-state LIM

models [60]. To alleviate these issues, our model simulations were run to steady state with con-

stant physical forcing (i.e. constant upwelling in NEMURO simulations; constant river input

in DIAZO simulations). The ocean is seldom at a true steady state, suggesting that it could be

fruitful for future studies to use results derived from non-steady state, three-dimensional, cou-

pled biogeochemical models as inputs for assessing LIM accuracy. However, prior work has

suggested that LIM results based on transient states are as accurate as those derived from true

steady-state conditions [34].

When using LIM data assimilation techniques it is important to consider the inherent

biases of the L2MN and MCMC approaches. Well known biases associated with the L2MN

approach have been assessed in other manuscripts [27, 29, 30] and are related to the L2MN

approach’s goal of minimizing total flow through the ecosystem. In our simulations, this was

Fig 7. LIM model estimated δ15N values. Box plots show 95% confidence intervals, quartiles, and mean for MCMC

+15N. Diamonds show values determined by L2MN+15N. Dashed gray line shows “true” value from the forward model

run. � indicates that the DIAZO model had only one dissolved inorganic nutrient pool, while the LIM models had two.

https://doi.org/10.1371/journal.pone.0199123.g007
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apparent in the L2MN approach’s attempt to minimize recycled production (minimizing

NH4
+ production by multiple compartments while maximizing N2 fixation) and minimize the

number of trophic steps through the zooplankton (thus typically underestimating mesozoo-

plankton trophic level and overestimating secondary production). The MCMC approach,

however, has subtle biases of its own that must be considered. Specifically, a greater portion of

the solution space tends to exist at high total system throughput (i.e. sum of all flows) than at

low total system throughput. Thus the MCMC mean solutions (which average across all possi-

ble solution sets) tend to be biased towards solutions that increase total flow, often by includ-

ing many trophic steps and enhanced recycling.

In addition to these biases, LIM model results can be affected by the assumed ecosystem

structure used to construct the model. For instance, increased aggregation of functional groups

(i.e. inclusion of less compartments) was shown to decrease LIM model accuracy in a tidal sys-

tem [61]. In pelagic systems, even splitting detritus into three size-structured detritus compart-

ments can substantially impact the relative contribution of different phytoplankton groups to

total export [4]. Unfortunately, the appropriate level of aggregation and the true ecosystem

structure are seldom known a priori and must be estimated by the investigator. In this way,

our decision to use different ecosystem structure for the LIM and the two forward models

allows us to simulate the difficulties found in the field. For instance, the LIM model allows dia-

zotrophy, which is absent from the NEMURO forward model. Thus the LIM model consis-

tently overestimates the “true” rate of N2 fixation (zero). An important result of our study was

that the inclusion of 15N data improved the LIM model’s ability to reconstruct the “true” values

despite these differences in model structure.

Regardless of which approach is used (MCMC or L2MN), the inclusion of 15N data pro-

vides additional constraint on the system. This agrees with the finding of Vézina and Pahlow

[34] that inverse approaches using multiple currencies (e.g. C and N, or N and 15N) were more

accurate than approaches using only a single currency. When applied to natural pelagic ecosys-

tems that are usually highly underconstrained due to the difficulty of measuring planktonic

rates in situ, we expect that both 15N approaches will outperform the results of LIM models

without this additional data source. However, although our forward models and LIM

approaches assumed the same known isotopic fractionation factors, in situ fractionation fac-

tors should be assumed to have some uncertainty to them. Indeed, our understanding of taxo-

nomic diversity in fractionation processes is still evolving. For instance, the isotopic

fractionation coefficients for zooplankton (εexc and εeg) together control the trophic enrich-

ment factor (TEF) of consumers, which has typically been assumed to be in the range of 3–3.5

for a diverse suite of organisms. However, recent evidence [62, 63] suggests that the TEF of

protozoans is much lower (less than 1), thus necessitating lower values for εexc and εeg. If accu-

rate 95% confidence intervals on δ15N values are required, it is thus likely necessary to incor-

porate uncertainty in isotopic fractionation coefficients.

When used with in situ data sets, the MCMC+15N approach can be easily adapted to incor-

porate variable stoichiometric data (with or without δ15N data) if such datatypes are available.

It would be trivial to replace @K and @U (the vectors containing the known and unknown/vary-

ing δ15N values, respectively) with vectors including C:N, N:P, or δ13C data, each of which

could be used to update the approximate equations stored in matrix A. In this way, our

approach is best seen as a flexible tool that can be used to assimilate diverse available datasets

into a constrained estimate of ecosystem structure.

APPENDIX 1 –approximate equalities

Input measurements used for all LIM approaches
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NFixDTM + NO3!DTM + NH4!DTM − DTM!DOM + NFixCYA + NO3!CYA +

NH4!CYA − CYA!DOM = NPP

DTM!MES = MesozooGrazing

NO3!DTM + NO3!CYA = NitrateUptake

DET!Sink = SedimentTrapExport
15NMass balance equations used for L2MN+15N and MCMC+15N
Rupno3×EXT!NO3 − (RNO3×αno3)×NO3!CYA − (RNO3×αno3)×NO3!DTM = 0

−(Rnh4×αnh4)×NH4!DTM − (Rnh4×αnh4)×NH4!CYA + (Rhnf×αexc)×HNF!NH4 +

(Rmic×αexc)×MIC!NH4 + (Rmes×αexc)×MES!NH4 + (RDOM×αsol)×DOM!NH4 = 0

Rnfix×NFixCYA + (RNO3×αno3)×NO3!CYA + (Rnh4×αnh4)×NH4!CYA − Rcya×-
CYA!HNF − Rcya×CYA!MIC − Rcya×CYA!DET − Rcya×CYA!DOM = 0

Rnfix×NFixDTM + (RNO3×αno3)×NO3!DTM + (Rnh4×αnh4)×NH4!DTM–

Rdtm×DTM!MIC–Rdtm×DTM!MES–Rdtm×DTM!DET–Rdtm×DTM!DOM = 0

Rcya×CYA!HNF + Rdet×DET!HNF–Rhnf×HNF!MIC–Rhnf×HNF!MES–

(Rhnf×αexc)×HNF!NH4 –(Rhnf×αeg)×HNF!DET–(Rhnf×αexc)×HNF!DOM = 0

Rcya×CYA!MIC + Rdtm×DTM!MIC + Rhnf×HNF!MIC + Rdet×DET!MIC–Rmic×-
MIC!MES–(Rmic×αexc)×MIC!NH4 –(Rmic×αeg)×MIC!DET–

(Rmic×αexc)×MIC!DOM = 0

Rdtm×DTM!MES + Rhnf×HNF!MES + Rmic×MIC!MES + Rdet×DET!MES–Rmes×-
MES!HTL–(Rmes×αexc)×MES!NH4 –(Rmes×αeg)×MES!DET–

(Rmes×αexc)×MES!DOM = 0

Rdtm×DTM!DET + Rcya×CYA!DET + (Rhnf×αeg)×HNF!DET + (Rmic×αeg)×-
MIC!DET + (Rmes×αeg)×MES!DET–Rdet×DET!HNF–Rdet×DET!MIC–Rdet×-
DET!MES–(Rdet×αsol)×DET!DOM–Rdet×DET!Sink = 0

Rdtm×DTM!DOM + Rcya×CYA!DOM + (Rhnf×αexc)×HNF!DOM + (Rmic×αexc)×-
MIC!DOM + (Rmes×αexc)×MES!DOM + (Rdet×αsol)×DET!DOM–

(Rdom×αsol)×DOM!NH4 = 0

Rupno3×EXT!NO3 + Rnfix×NFixCYA + Rnfix×NFixDTM–Rdet×DET!Sink–

Rmes×MES!HTL = 0

In all equations Rx refers to the 15N:14N isotopic ratio of compartment x, which is computed

from δ15N values using the equation Rx = δ15Nx × RN2 / 1000 + RN2, where RN2 is the 15N:14N

isotopic ratio of atmospheric dinitrogen gas. In all equations αy refers to the isotopic fraction-

ation coefficient for process y and is calculated from the isotopic fractionation factor (εy) for

process y according to the equation αy = exp(εy/1000). Fractionation factors used in this study

were taken from Yoshikawa et al. [41] and had values of εNO3 = -5‰, εNH4 = -10‰, εexc =

-5‰, εeg = -2‰, εrem = -1‰.
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